# 30aYB-1 Bose-Einstein Condensation in Competitive Processes 

Hideaki Shimazaki $\dagger$ and Ernst Niebur*<br>$\dagger$ Dept. of Physics, Kyoto University<br>*Dept. of Neuroscience, Johns Hopkins University

Competition plays a significant role in biological and social activities, and is the basis of evolution. We introduce an irreversible discrete multiplicative process as a generic model of competition [1], which satisfies three conditions at each time step:

1. A player's gain is proportional to its ability and to its gain at the previous step.
2. Players compete for finite resources.
3. A new player joins the game.

In short, players with different abilities successively join the game and compete for finite resources. The model is based on Malthusian population dynamics with


Fig1. (a) Temporal evolution of competitive processes at a low temperature (left) and a high temperature (right). (b) Absolute value of chemical potential analogue. (c) Occupation ratio by a dominant player. normalization at each step, and allows the introduction of new players, which is a hallmark of an open, nonequilibrium system. The model shows macroscopically observable changes in its behavior; at a singularity in the statistical distribution of the players' abilities, some of the most capable players become dominant over all others [Fig. 1]. To understand this nonequilibrium phase transition, we introduce a temperature analogue that parameterizes the ability distribution. We show that the emergence of dominant players and the evolutionary development of the system are described by the mathematical framework of Bose-Einstein condensation (BEC). Applied to biological competitions, BEC in an irreversible process provides theoretical grounds for the principle of competitive exclusion and the hypothesis of punctuated equilibria. Biologically plausible mechanisms that make the system self-organizes into the critical state will be proposed.
[1] Hideaki Shimazaki and Ernst Niebur, cond-mat/0303298

