Review of

PROBABILITY DISTRIBUTIONS




Probabillity distribution

Probability that a (continuous) random variable
Xis in (x,x+dx).

P(x<X<x+dx)

Probability density function (PDF).

- Plx<X<x+dx
1(5)- pim P2 =X <20

P(x<X<x+dx)==f(x)dx

Cumulative distribution function (CDF)
= Life time distribution.

F(x)=P(X =x)= [ f(s)ds

Survival function
= Complementary CDF.

F(x)=P(X > x)= [ 1 (s)ds=1-F(x)
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The fundamental theorem of calculus

The relation between probability distribution and probability density A
function.
F(x) = f:of(s)ds
d d [ px
S F(x) =\ [ (s)as |- £ (x)
N _/
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Probability distribution: Example

4 Exponential distribution )
Probability density function (PDF). S (x)=2e?
Cumulative distribution function (CDF). F(x)
Survival function. A
Expectation E[X] =1" Variance Var[X] =17
)
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Samples from a distribution

-

\_

If a random variable X follows a cdf Fx,
then the r.v. U given by

U=FX(X)=f_);fX(S)dS

follows an uniform distribution in [0,1].
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Homework 1-1

’

Confirm that U = FX(X) follows an uniform distribution in [0,1].

when X is a random variable from F, (x)=f0fo (S)ds

.

o p

Suppose a random variable (r.v.) X given by a pdf f, (x)

Consider ar.v. Y that is transformed from X
using a monotonic functiong. Y = g(X)

The distribution of Y is given as /()= /()

Consider a particular relation given by CDF, g(X) =F, (x) = f_xwa(S)dS

-1

=1

-1

Then we obtain fy(y)=fx(x)‘g'(x) =fx(x)‘fx(x)

\_
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Samples from a distribution

(" ™
Inverse function method CDF

Let U be an uniform r.v..
X that satisfiesU = [ f,(s)ds follows the density f, (x). .,

Therv. X =F™'(U) follows the CDF given by F.
k 0 2 4 6 )

Exponential distribution: f, (x)=Ae™

U=FX(X)=f_i)Le"MdS=l—e"u

Ar.v. that follows an exponential distribution with rate A is
generated using an uniform r.v. X as

X =F'(U)=-2"og(U)

Memo: The distribution that can be inverted analytically is limited, e.g., Exp., Weibull,
Careto, etc. For other distributions, one can numerically compute CDF to obtain X. /
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Introduction to

POISSON POINT PROCESS
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Memoryless process

A point process is memoryless if intervals X satisfy
P(X>s+t1X>t)=P(X>5s)

\_ Y,
4 )
Question.
S Event
S that bought fri tor t
uppose that you bought a refrigerator I‘_'I

years ago. It still works well. I , ,
How long will it continue to work from now? 0

t r+s X
\_ J
(" Answer. h
We wish to know the probability that the refrigerator survives another s
years given that it survived t years. This is given as P(X >s+1| X > z‘).
From the memoryless property, it is equivalent to P(X > s).
Thus, the fact that the refrigerator survived t years did not provide any
L information to predict a failure of the refrigerator in future. y
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Exponential distribution

Q. What distribution possesses the memoryless property?

Ans. The exponential distribution: f(x) =™

The survival function can be written in a conditional form as
P(X >s+t)=P(X >s+t| X >t)P(X >1)
Using the memoryless property, we obtain
P(X >s+t)=P(X >s)P(X >1)
The exponential distribution satisfies the memoryless property.
If P(X > x) =™ | then P(X > S)P(X > t) =e Me M
= 0 = P(X > 5+ t)
d

Density is given as f(x) = _EP(X > x) _ Qe

\. J




Poisson point process

If intervals of events are samples from the exponential distribution,
and the intervals are independent each other, then the process is

memoryless.

This process is called a (homogeneous) Poisson point process.

\_ J

Poisson process 'I '|
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Simulating a Poisson process

Question. How can we simulate a Poisson point process?
4 )
Ans. Use the inverse function method to generate an
inter-spike interval (ISls) that follows an exponential
distribution.

1ISI X =-A""logU

I I I s
1 2 3 4 5
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The Poisson distribution

Let’s consider a distribution of the number of spikes that occurred in T[s].

N, : the number of spikes that happens in T [s]
1 2 3 N, -th spike

<€ 7 -

4 )
A count distribution of a Poisson point process is given by a Poisson
distribution. .o

(AT
_ _ AT 020 .
P(NT—n)— r e et |17
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Homework 1-2

4 )
Derive the Poisson distribution for
the first few spike counts, N, =0,1,2.
/
)
If there is no spike in T, then the first spike occurred
X1 after T. This is given by survival function of an
‘ exponential distribution.
I |
| % P(N,=0)=P(X,>T)=F(T)
et the first spike occurred at s_1, the firs
X, Let the first spik d ats_1, the first IS|
NT =1 ‘ ‘ follows an exponential density, the second ISI
I . I should be greater than T-s_1.
S —
. PN =1)= f £ (s)F(r s )
N =2 X,
‘ ‘ ‘ Similarly if you have two spikes in T,
I |
I I
s, s, T PN =2)= [ [ £ (s) 1 (s, F (7 =s,) s s
\ J
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The Erlang distribution

Let’s consider a distribution of a waiting time 7 until spikes occurred n times.

1 2 3 n-th spike

4 )
Waiting time of multiple spikes from a Poisson process is given by an
Erlang distribution.

04[
03[

A'nrn—l ) t
e dr oal

(n-1)!

P(‘L’<X<‘L’+d1’)=

01l
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Spike count and IS

The relation between a Poisson and Erlang distribution.

1 2 3 n-1 n

N_ spikes

If S >t ,the number of spikes in is at most n-1.

P(N,<n)=P(S,>7)

Rhs is a survival function of an Erlang distribution.
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Instantaneous spike rate

Alternative definition of a Poisson point process

Divide T into small N bins of a small width A (T=NA).
Spike

t r+A
)¢

‘Instantaneous spike rate
P(aspike in [1,1+A)) = AA+0(A)

P(>1 spikes in [1,1+A)) = 0(A)

P(no spikes in [1,1+A))=1-AA+0(A)

O(A) is a function that approaches to zero faster than A : Pm

\_
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Relation to the Poisson distribution

~N

" The probability of a spike/no spike is an approximation of the Poisson
distribution for a small time bin.

The spike count in a small bin is approximated as
P(N = n) = @e-*A = (M)[l—mﬂ(m)z +]
2

A n! n!

In particular,
P(N, =0)= 1[1—)LA+%()LA)2 +---]=1—)LA+0(A)

A

P(N, =1)= )LA[I—)LA+%()LA)2 +-~]= A +o(A)

P(N, =2)= ()LA)z[l—)LA+%()LA)2 ] N
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Exponential / Poisson distribution revisited

The exponential distribution from an instantaneous spike rate.

4 ™
The probability that no spikes happened in N-1 bins and a spike

happened in the last bin (geometric distribution). (x=NA)
P(x<X <x+A)=(1-24)"" 2A+0(A)

P(x<X<x+A)

ISI distribution: f(x)=1lim _de
b y,
The Poisson distribution from an instantaneous spike rate.
i )

The probability that n spikes happened in N bins (T=NA).

(A7)

e asA—0
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Exponential distribution revisited

We can derive the exponential distribution from an instantaneous spike rate,
A [spike/sec]

4 N
Divide T into small N bins of a width A.
N bins Probability
( A A Splke a spike in a bin: AA
|| | |0| ‘ | >2 spikes in a bin:  o(A)
_ no Spikes in a bin: 1_AA+0(A)
L T =NA )
4 ™
The probability that no spikes happened in N-1 bins and
a spike happened in the last bin.
P(x<T<x+A)=(1-2A)" AA+0(A)
P T<x+A
IS distribution: f(x)= lim (x<T<x+4) = Ae ™
. J
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Poisson distribution revisted

We can derive the Poisson distribution from an instantaneous spike rate,

A [spike/sec]

( )
Divide T into small N bins of a width A.
N bins Probability
( A A Splke a spike in a bin: AA
| | | |0| ‘ | >2 spikes in a bin:  o(A)
_ no spikes in a bin: 1—)\,A+0(A)
T =NA
4 ™
The probability that n spikes happened in T [s].
N Nn oo (AT)
P(N,=n)= (1-2A)""(2A) ——e as A—0
n n.
- y,
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Homework 1-3

: The probability that no spikes happened in N-1 bins and a A
spike happened in the last bin is given as
AA

P(x<X<x+A)=(1-2A)"" AA+0(A)= m(1—)LA)N +o(A)

Show that the ISI distribution becomes an exponential

L distribution. )
. | | N
Approximate the terms by the Taylor expansions.
| lo (1_x)=_x_lx2_lx3...
1—=1+x+x2+x3--- & 2 3
- (1- )LA)N = exp| Nlog(1- )LA)]
AA > i
Y =)LA{1+)LA+()LA) +} —exp N{_M_%(M)z _H

=AA+ O(A)
=™ (1—%)szA+---)
Hence we obtain

P(x<X <x+A)=AAexp[-Ax]|+0o(A) , and f(x)=1im

_ )Le—lx
A—0

_ A Y

P(x<X<x+A)
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Homework 1-4

-
Probability that n spikes occur in N bins (T [s]) is given as
P(N, =n)=( N )()LA)"(I—)LA)N'"

n

Show that the probability becomes the Poisson distribution for large N and
small A with a relation given by a constant T=NA. )

(i D

Using an approximation given by the Taylor expansions (See previous slides).

PNy =)= (van!)!n!(ﬁiA)n(l_M)N ) (van!)!n!(AA)n exp|~AAN]

Use the relation, T=NA, to obtain

N! 1 n
P(N, =n)= (N =)V a(AT) exp[-AT ]
Use the Stirling’s formula InN!~NInN-N
N
and prove that In N =(1—£)ln(1—£) —n=1"Ine"-n—0
\_ (N-n)!N" N N )
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Likelihood function

(

\_

~
1] I
0 T
p(t;,tys..st, NN, =n)=A"exp[-AT |
y
4 )
p(tlatza atnmNT=l’l)An
=f(t1)Anf(ti—tl )A-P(t,, >Tlt,)
i=2
= )Lexp(—)ttl)A:_i[)Lexp[—)L(ti = tl._l)]A : exp[—)L(T - tn)]
i=2

= A"Aexp|-AT |

\ Here the ISI distribution is  f () = Aexp[-Ax] y
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INHOMOGENEOUS POISSON
PROCESS




Inhomogeneous Poisson process

Instantaneous rate )L

\/\A//\A/

Point process

! t+ A

P(a spike in [1,1+A)) = A(1)A+0(A)

Time-dependent rate
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Inhomogeneous Poisson process

Instantaneous rate )L(t)

VAR VAV V4

Point process

[ 1 ] I
.

| Z,

l

F(t11) = A(r)exp| - 2(u)du| for 151,

Note that the above formula extends the exponential ISI| of
homogeneous Poisson process.
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Homework 1-5

[ Derive the ISI density of the inhomogeneous Poisson process. ]

€ )
Let the last spike occurred at time 0.

The probability of a spike occurrence in [t, t+A) is given as
N-1

P(t<X< t+A)=] J[1-A(kA)A]-[A(NA)A]+0(A)
- 1?&?’]&1 -ﬁ:[l—k(kA)A]+o(A)

Using the following approximation,

N
Soe{1-2
k=1

=A(NA)A+o(A)

N

| [[1-2(kA)A]=exp

ki(NA)A
1-A(NA)A

—exp[i kA A+0 }
k=1

=)L(t)exp[—f(j)t(u)du

. P(t <X< t+A)
The ISI density is given as f(#)=1im L

A0 A
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Likelihood function

4 A
AN
o | || I N
1, t, L,
plivtarot, ANy =)= (s expl- [ 2(u) ]
\- J
4 A

Pttty ANy =) A" = (1) AT [£(116,,)A- P (1, > T,
i=2

n

_ H)L(ti)Aexp[—foTA(”)du]

i=1

Here the ISI distribution is given as f(tl. Itl._l) = )L(tl.)exp[—
\ J
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What we learned

« Exponential distribution = Poisson process.

v  Memoryless property of a process.

* Poisson count distribution, Waiting time distribution (Erlang).
« Definition of a Poisson process using instantaneous firing rate.
* Exponential and a Poisson count distribution revisited.

* Inhomogeneous Poisson process: |S| distribution and likelihood
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Tomorrow, we will learn

* Renewal process: Conditional intensity function and ISl density. ]

* non-Poisson process (Point process written by the conditional intensity
function)

» Time-rescaling theorem

 How to simulate a point process via the time-rescaling theorem.

 How to assess a point process model via the time-rescaling theorem.
(Q-Q plot and K-S test)
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Follow-up from the lecture feedback

Stimulus signal X ( Tomorrow’s topic.
Instantaneous spike-rate A(z Today’s topic.

\/\/\/\/\/\/

Point process

t t+ A
P(aspike in [t,t+A)) = A(1)A+0(A)
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Likelihood function

Density function f(x) =le™ ™
An observed sample X

Likelihood function ~ L(A)= f(X)=Ae™™

Multiple observation X, X,, -+, X

n

Likelihood function L(),) = Hp(X | A)

Maximum likelihood estimation (MLE)

A p = argmaxnp(Xi 1)
i=1

A
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Likelihood of a Poisson process

(Likelihood function of a homogeneous Poisson process )

Inter-spike Intervals (I1Sls)
p(tty.t, NN =nlA)=p(t,t,-1,,....t, =1, (N, =n)

Hf t 3 A) F(T-t,;1)

£t =1,)= hetm)
= A" exp[-AT |

Likelihood function of a inhomogeneous Poisson process

p(ttynt, "N, =nl Ay )= p(t,,t, = t,,....1, =, , NN, =n)

[t ) F(T=152,0)

f(ti _ti_1)=A’(ti)eXp|:_ ;)L(u)du] i=1

H)L exp[ f )L ]
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