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STATE SPACE MODEL 
Modeling time-dependent system 



2 	
Hideaki Shimazaki, Ph.D. http://goo.gl/viSNG	
 State-space model and recursive Bayesian filter 

Demo	


Hippocampal place cells recorded in the Wilson lab	




3 	
Hideaki Shimazaki, Ph.D. http://goo.gl/viSNG	
 State-space model and recursive Bayesian filter 

Two-stages analysis of neural signal	


Brown et al. Journal of Neuroscience 1998; 18: 7411-7425. 
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Discrete-time Poisson-GLM 

λk xk,β( )Δ = eβ0+x
T
kβ

P yk | xk,β( ) = exp yk log λk xk,β( )Δ{ }−λk xk,β( )Δ( )

Δ

Point process	


Covariate signal	


1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

kth-bin

xk

yk
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State-space model 

xk

yk

xk−1

yk−1

Hidden state 

Observation 

Observation model: Point process (discretized) 

State model: Gaussian 
Hyper-parameters: 

xk = xk−1 +ξk
w = Q,µ,Σ[ ]ξk ~ N 0,Q( )

x1 ~ N µ,Σ( )

P yk | xk,β( ) = exp yk log λk xk,β( )Δ{ }−λk xk,β( )Δ( )
λk xk,β( )Δ = eβ0+x

T
kβ
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Posterior density of the state 

p x1:K | y1:K ,β,w( ) =
P y1:K | x1:K ,β( ) p x1:K |w( )

P y1:K | β,w( )

Likelihood Prior (State model) Posterior 

Evidence 
parameters β,w

MAP estimate: the most likely path of the hidden state. 

Once we construct the posterior, we can obtain	


Credible interval: an analog of confidence interval in Bayesian estimation. 

We obtain the joint posterior density  => Bayesian recursive filter.	


Bayes’ rule: 
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Recursive Bayesian filter 

p xk | y1:k,β,w( ) =
P yk | xk,β( ) p xk | y1:k−1,β,w( )

P yk | xk−1,β,w( )
Bayes’ rule 

Likelihood One-step prediction Filter at k-th step 

p xk | y1:k−1,β,w( ) = p xk | xk−1,w( )∫ ⋅ p xk−1 | y1:k−1,β,w( )dxk−1

Chapman-Kolmogorov equation 

Filter density at (k-1)-th step 

p x1:k | y1:k( )p xk | y1:k−1( )
One-step prediction Filter xk

yk

xk−1

yk−1
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Recursive Bayesian filter	


0

tt-1

One-step prediction distribution

Filter distribution

Filter distribution

observation

Prediction

k −1 k

xk−1 xk
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Methods to obtain the posterior 

Analytical methods 

Monte Carlo methods 

Gaussian approximation (Laplace’s method).  

Expectation propagation. 

Sequential importance resampling (Particle filter). 

Conjugate prior. 

Markov chain Monte Carlo (MCMC). 

Methods for obtaining the posterior density to name a few… 
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One-step prediction density 

p xk | y1:k−1,w( ) = p xk | xk−1,w( )∫ ⋅ p xk−1 | y1:k−1,β,w( )dxk−1

Chapman-Kolmogorov equation 

Assumption 
N xk−1|k−1,Wk−1|k−1( )N xk−1,Q( )

xk|k−1 = xk−1|k−1
Wk|k−1 =Wk−1|k−1 +Q

0

tt-1

One-step prediction distribution

Filter distribution

Filter distribution

observation

Prediction

One-step prediction is a normal density with	


mean	


covariance	
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Filter density 

p xk | y1:k,β,w( ) =
P yk | xk,β( ) p xk | y1:k−1,β,w( )

p yk | xk−1,β,w( )
∝ exp[yk log λk xk,β( )Δ{ }−λk xk,β( )Δ

−
1
2
xk − xk|k−1( )T Wk|k−1

−1 xk − xk|k−1( )]

Likelihood One-step prediction density Filter density 

0

tt-1

One-step prediction distribution

Filter distribution

Filter distribution

observation

Prediction
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Log-concave functions 

Exponential family of distributions are in general log-concave 
with respect to parameters in ‘natural form’. 

Log-concave:   
the function is log-concave if the logarithm of the function is concave. 

A function obtained by multiplication of two log-concave functions 
is log-concave.  

Concave function. 

Rationale 

Paninski, L. (2005). Advances in NIPS 17 1025–1032 
Boyd S. (2004). Convex Optimization 

p xk | y1:k,β,w( )∝P yk | xk,β( ) p xk | y1:k−1,β,w( )
Log-concave Log-concave Log-concave 
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Newton-Raphson method 

f xk( ) = yk log λkΔ( )−λkΔ−
1
2
xk − xk|k−1( )T Wk|k−1

−1 xk − xk|k−1( )

Newton-Raphson method: 

xnewk = x
old
k − ∇∇f( )−1∇f

Log-posterior: 

Newton-Raphson method to find a posterior mode 

Posterior mode 

xk|k ≡ argmax
xk

f xk( )
Posterior mode (MAP estimate): 

Gradient Hessian evaluated at  xoldk
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Gradient and Hessian 

gradient 

H = −βTλkΔβ −Wk|k−1
−1

∇f xk( ) = yk −λkΔ( )β −Wk|k−1
−1 xk − xk|k−1( )

Hessian 

λk = e
β0+βxkIf we use a canonical link function 

gradient 

H ≡
∂f xk( )
∂xk∂x

T
k

= −
∂ logλk
∂xT

λkΔ
∂ logλk
∂xk

+ yk −λkΔ( )∂ logλk
∂xk∂x

T
k

−Wk|k−1
−1

∇f xk( ) = yk −λkΔ( )∂ logλk
∂xk

−Wk|k−1
−1 xk − xk|k−1( )

Hessian 
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Gaussian approximation 

Filter mean: 

Wk|k = −H
−1

xk|k

∇f xk( ) = 0

Filter covariance: 

xk|k

Wk|k

Laplace’s method for a Gaussian approximation 
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Recursive nonlinear filtering 

0

tt-1

One-step prediction distribution

Filter distribution

Filter distribution

observation

Prediction

W −1
k|k =Wk|k−1

−1 +βTλk xk|k( )Δβ

xk|k = xk|k−1 +Wk|k−1β yk −λk xk|k( )Δ( )Filter mean: 

Filter covariance: 

Solved by  
Newton-Raphson Method 

One-step prediction 

Observation error (innovation) 

Information given by data at k-th step. One-step prediction 

Recursive nonlinear filtering 
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Filtering/Smoothing 

x t|t−1 = x t−1|t−1
Wt|t−1 =Wt−1|t−1 +Q

One-step prediction 
Mean 

Covariance 

Fixed interval smoothing 
Mean 

Covariance 

Recursive nonlinear filtering 

Mean 

Covariance W −1
k|k =Wk|k−1

−1 +βTλk xk|k( )Δβ

Solved by  
Newton-Raphson Method 

xk|k = xk|k−1 +Wk|k−1β yk −λk xk|k( )Δ( )

Forward recursion 

Backward recursion 

k =1,2,,K

k = K −1,K − 2,,2,1

xk|K = xk|k + Ak xk+1|K − xk+1|k"# $%

Wk|K =Wk|k + Ak Wk+1|K −Wk+1|k
"# $%A

T
k

Ak =Wk|kW
−1
k+1|k
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Joint estimation of posterior and parameters	


p x1:K | y1:K ,β,w( ) =
P y1:K | x1:K ,β( ) p x1:K |w( )

P y1:K | β,w( )

Likelihood Prior Posterior 

Evidence  
(marginal likelihood) 

E-step: Given the parameters, construct the posterior 

M-step: Given the posterior, optimize the parameters 

For this goal, we maximize a lower bound of the marginal likelihood (Q-function)	


Q wnew |w( ) ≡ Ex1:K |y1:K ,β ,w logP y1:K ,x1:K | β,w
new( )"

#
$
%

Expected complete data log-likelihood. 

Expectation-Maximization algorithm for joint estimation of posterior and 
parameters.	
(ref. Smith & Brown, 2003) 

Optimization of the parameters bymaximizing the (marginal) likelihood.	

wMLE = argmax

w
logP y1:K | β,w( )
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Derivation of the lower bound	


logP y1:K | β,w
new( )

= log P y1:K ,x1:K | β,w
new( )dx1:K∫

= log p x1:K | y1:K ,β,w( )
P y1:K ,x1:K | β,w

new( )
p x1:K | y1:K ,β,w( )

dx1:K∫

= logEx1:K |y1:K ,β ,w
P y1:K ,x1:K | β,w

new( )
p x1:K | y1:K ,β,w( )

"

#
$
$

%

&
'
'

≥ Ex1:K |y1:K ,β ,w log
P y1:K ,x1:K | β,w

new( )
p x1:K | y1:K ,β,w( )

"

#
$
$

%

&
'
'

= Ex1:K |y1:K ,β ,w logP y1:K ,x1:K | β,w
new( )"

#
%
&−Ex1:K |y1:K ,β ,w log p x1:K | y1:K ,β,w( )"# %&

logP y1:K | β,w
new( ) ≥Q wnew |w( )

Q-function	
 Irrelevant to 	
wnew

The marginal log-likelihood function can be bounded as follows. 	


Hence we obtain 	


Entropy of the posterior	
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Model selection	


Model Selection penalized by model dimension 

ABIC = −2log p y1:T ,x1:T |w( )dx1:T∫ + 2×model dimension

Log-quadratic approximation 

Bayesian model selection 

B12 y1:T( ) =
p y1:T |M1( )
p y1:T |M 2( )

p y1:T( ) = p y1:T ,x1:T( )dx1:T∫

Bayes Factor 

Data Data Hidden state 

(Jeffrey 61, Kass&Raftery 95) 
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APPLICATIONS OF THE 
STATE-SPACE MODEL 
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Two stages analysis 

1998 
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Hippocampal place cell  
receptive field model Theta phase modulation of spike rate 

1998 
Encoding model	


Likelihood function 

Conditional intensity function 
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p-values of observed spike count 
against a null hypothesis of a 
Poisson model 

Cells are more variable than 
a Poisson 

Residual analysis of the state-model 

Test rejected a bivariate Gaussian 
model. 
Assumption of independence was 
also rejected. 

Goodness-of-fit of the encoding model 
1998 
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State equation 

One-step prediction 

Posterior (Filter) 

Observation 
Data up to time t_k 

Data up to time t_k-1 

Filter at t_k-1 

1998 
Recursive point-process filter	
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0

tt-1

One-step prediction density

Filter density

Filter density

Observation

Prediction

Algorithm for a point process filter	
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DECODING 

Abrupt change 
was not captured. 

1998 
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DECODING 

ML was the second best, 
however with a lot of outliers. No difference. 

1998 
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1D animal position Change in the receptive fieldå 

Conditional intensity model Update rule 

spikes 

2001 
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Demo	

2001 
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•  A full mathematical formulation of an adaptive point process filter. 
•  Fast approximation of the adaptive point process filter.  
•  Simulation study on (1) tracking place filed dynamics, (2) simultaneous estimation 

of receptive field dynamics and arm trajectory (decoding). 

2004 
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Selected references of state-space analyses	

•  Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA. A statistical paradigm for neural spike train decoding applied to position 

prediction from ensemble firing patterns of rat hippocampal place cells, Journal of Neuroscience 1998; 18: 7411-7425. 

•  Receptive field plasticity 
–  Brown EN, Nguyen DP, Frank LM, Wilson MA, Solo V. An analysis of neural receptive field plasticity by point process adaptive filtering. 

Proceedings of the National Academy of Sciences 2001; 98: 12261-12266. PMID: 11593043 
–  Frank LM, Eden UT, Solo V, Wilson MA, Brown EN. Contrasting patterns of receptive field plasticity in the hippocampus and the entorhinal 

cortex: an adaptive filtering approach. Journal of Neuroscience 2002; 22: 3817-30. PMID: 11978857 
–  Eden UT, Frank LM, Barbieri R, Solo V, Brown EN, Dynamic analyses of neural encoding by point process adaptive filtering, Neural 

Computation, 2004, 16(5): 971-998. PMID: 15070506 
•  Multiple neuron GLM-point process 

–  Truccolo W, Eden U, Fellow M, Donoghue JD, Brown EN. A point process framework for relating neural spiking activity to spiking history, neural 
ensemble and covariate effects. Journal of Neurophysiology, (published online Sept. 8, 2004), 2005, 93: 1074-1089.  

–  Okatan M, Wilson MA, Brown EN. Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural 
Computation, 2005, 17(9): 1927-1961.  

–  Czanner G, Eden UT, Wirth S, Yanike M, Suzuki WA, Brown EN. Analysis of between-trial and within-trial neural spiking dynamics. Journal of 
Neurophysiology, 2008, 99: 2672-2693. PMID: 18216233  

•  EM-algorithm (Joint state-space and parameter optimization) 
–  Smith AC, Brown EN. Estimating a state-space model from point process observations. Neural Computation. 2003; 15: 965-91. PMID: 12803953 

•  Behavioral analysis 
–  Smith AC, Frank LM, Wirth S, Yanike M, Hu D, Kubota Y, Graybiel AM, Suzuki W, Brown EN. Dynamic analysis of learning in behavioral 

experiments, Journal of Neuroscience, 2004, 15: 965-91. PMID: 14724243 
–  Smith AC, Stefani MR, Moghaddam B, Brown EN. Analysis and design of behavioral experiments to characterize population learning. Journal of 

Neurophysiology (published on line Sept. 29, 2004), 2005, 93: 1776-1792.  
–  Smith AC, Wirth A, Suzuki W, Brown EN. Bayesian analysis of interleaved learning and response bias in behavioral experiments. Journal of 

Neurophysiology, 2007, Mar; 97(3):2516-24. PMID: 17182907 
•  Motor prosthetics 

–  Brockwell, AE, Rojas, A L, Kass, RE, Recursive Bayesian decoding of motor cortical signals by particle filtering. Journal of Neurophysiology, 
2004, 91(4) 1899-1907 

–  Srinivasan L, Eden UT, Willsky AS, Brown EN. A state-space analysis for reconstruction of goal-directed movements using neural signals. 
Neural Computation, 2006, 18(10): 2465-2494. PMID: 16907633 

–  Srinivasan L, Brown EN. A state-space framework for movement control to dynamic goals through brain-driven interfaces. IEEE Transactions on 
Biomedical Engineering, 2007, 54(3):526-535.  

–  Srinivasan L, Eden UT, Mitter SK, Brown EN. General purpose filter design for neural prosthetic devices. Journal of Neurophysiology, 2007, 
98(4): 2456-2475. PMID: 17522167 
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What we learned	


1 
•  Framework of a state-space model. 

2 
•  Recursive Bayesian filter (Laplace’s approximation).  

3 
•  Simultaneous estimation of posterior and parameters (EM-algorithm). 

4 
•  Model validation in a Bayesian framework (Bayes factor, ABIC),  

5 
•  Applications to neural decoding and plasticity.  
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Relations between GLM and Max-ent 

Conditional independence Joint probability mass function 

Bernoulli-GLM model Maximum entropy model 

Neuron 1 

Neuron 2 

Neuron 3 

Neuron 4 

𝑘 𝑘−1 𝑘 𝑘−1 


